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We consider a generalized Frenkel-Kontorova model, describing the dynamics of a chain of particles in a
periodic substrate potential, and analyze the effect of discreteness on the existence and properties ébinternal
shapg¢ modes of kinks, topological excitations of the chain. In particular, we show that kink’s internal modes
can appeanot only belowbut also abovehe phonon spectrum band and, in the latter case, the localized mode
describes out-of-phase oscillations of the kink’s shape. For the sinusoidal on-site potential, when the model is
described by the discrete sine-Gordon equation, we reveal, in sharp contrast with the continuum limit, the
existence of the kink’s internal mode in a narrow region of the discreteness parameter. We apply two different
analytical techniques to describe the cases of weak and strong coupling between patrticles, explaining qualita-
tively and even quantitatively the main features of the kink oscillations observed in numerical simulations. We
also discuss the effect of nonlinearity on the existence and properties of kink’s internal modes and show, in
particular, that a nonlinearity-induced frequency shift of the lattice vibrations can lead to the creation of the
nonlinear kink’s internal modeswhich, however, slowly decay due to a generation of radiation through
higher-order harmonic$S1063-651X%97)11010-9

PACS numbsgfs): 46.10:+z, 63.20.Ry, 66.30.Hs, 03.40.Kf

I. INTRODUCTION d2y,
W_g(ul+1+UI—1_2UI)+V;ub(UI):0: ()]
The well-known Frenkel-Kontorové~K) model, first in-

troduced in 1938 for describing dislocations in solids, where we define/},{u)=dVg u)/du. Because of the to-
was successfully used in investigation_s of a number of physipo|ogy of the potential/. {u), the system possesses degen-
cal phenomena such as charge-density waves, adsorbed |ayxte ground states for which all particles occupy all minima
ers of atoms, domain walls in ferro- and antiferromagneticof the potential and then the simplest excited stata kink
systems, crowdions in metals, and hydrogen-bonded mokhat connects two neighboring states. The kinks were intro-
ecules(see, e.g., the review papie] and reference therein  guced by Frenkel and Kontoroya] to describe crystal dis-
The classical FK model describes a chain of linearly coupleqocations. Their exact shape in a discrete FK chain is not
particles (“atoms”) subjected to an external periodic sub- known in an explicit analytical form because the discrete set
strate potentials,{u). The Hamiltonian of the FK model of coupled nonlinear equatior(8) cannot be solved analyti-
can be written in the form cally in a general case. From the physical point of view, a

1 (du\? kink can be viewed aa local defectand therefore one may
u 9 2 wonder how such defects affect the dynamical properties of
= == + += -
H Z 2 ( gt TVsdu T (U mwTh @ chain, in particular the spectrum of its small-amplitude
excitations.
whereu, is the displacement of tHeh particle from its equi- In the limit of strong coupling, i.e., wheg>1, an ap-

librium position andg is the coupling constant between par- proximate solution can be obtained in the framework of the
ticles in the chain. We use a system of dimensionless unitsontinuum approximatioh—x=lag and u;(t)—u(x,t), so
such that the particle’s mass becomes equal to 1 and thbat Eq.(3) reduces to the partial differential equati@ome-
period and amplitude of the substrate potentigl{u) are times called the nonlinear Klein-Gordon equajion

a,= 2w ande =2, respectively. The minimum of this poten-

tial is chosen a¥ 4, 0)=0. For the classical FK model, the (ﬂ—u—dzaz 52_U+V, {U)=0 )
potentialVg,{u) is assumed to be of the simplest, sinusoidal ot? S gx?  su '
form

whered= \/g defines the kink’s width, in units of the period
Vg u)=1—cosu. (20  of the substrate potential. For the sinusoidal substrate poten-
tial (2), Eq. (4) becomes the well-known exactly integrable
The Hamiltonian(1) generates the equations of motion sine-Gordon(SG) equation[3]. Then, the kinks of the FK
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model in the continuum limit are described by the soliton The paper is organized as follows. In Sec. Il we present a
solutions of the SG equation and the spectrum of all lineageneral discussion of the kink’s internal modes that allows us
modes around the kink can be found in an explicit form. Itto understand the physics and some properties of this kind of
includesa continuum frequency barassociated with nonlo- localized excitation around the kink. Then, in Secs. Ill and
calized propagating solutiorifattice phonong modified by IV we summarize our results for the caseswdak(g<1)

the presence of the kink. In addition, the small-amplitudeand strong (g>1) interparticle interactions, respectively.
excitation spectrum includethe zero-frequency localized Section V includes the analysis of the effect of nonlinearity

mode the so-called Goldstone mode, associated with th&" the kink’s internal mode. Section VI concludes the paper.
translational invariance of the SG model.

When the potentiaVg,{u) deviates from the sinusoidal Il. KINK'S INTERNAL MODES:
shape(2), the spectrum of the continuum model can be A QUALITATIVE PICTURE
modified qualitatively by the appearance of additional local- A. Kink's internal modes as impurity modes

ized modes, okink internal modeswith frequencies below
the lowest phonon frequency, i.e., in the gap of forbidder‘kirl

frequencies for phonon modgs,5. The existence of these cal methods, it is useful to get a general feeling of the phys-

localized modes has important consequences on the kink d¥- . ) -
namics because thev can temporarily store ener takecs and results. This can be achieved by mearwuafitative
y P y 9y proachdescribed in this section.

away from the kink’s kinetic energy, which can later be re- In the present paper we consider, for definiteness, the ex-

stored again in the kinetic energy. This gives risessonant  gpie of the generalized FK model with a nonsinusoidal
structuresin kink-antikink collisions[5]. The similar effect ¢ ,pstrate potential of the form

is known for the kink-impurity interaction6] where an im-
purity mode plays the role of the kink’s internal mode. (1—r)%(1—cos)
For lattice models very little is known about the kink’s Veud U) = 1+r2+2r col ©
internal modes. The only mode that has been investigated
extensively so far is the translational mode, or the Goldston&his model of the substrate potential was introduced by Pey-
mode, which is important because the kink breaks the trangard and Remoissengt], so that below we refer to the po-
lational invariance. In a discrete lattice, the frequency of thigential (5) as the Peyrard-Remoisser@R) potential. The
mode increases from zer@vhich corresponds to the con- shape of the potential is defined by the parametér|<1.
tinuum limit) as discreteness increases; this is associatedor r>0 the potential5) has flat bottoms separated by thin
with the existence of a potential barrier in a discrete latticebarriers, while for <0 it has the shape of sharp wells sepa-
that must be overcome to move the kink along one latticdated by flat wide barriers. For small valuesrofthe poten-
spacing[7]. This potential is known as the Peierls-Nabarrotial reduces to the double-sine-Gord@dSG) potential[8]
(PN) potential in the context of the dislocation theory. When
the potentiaV { u) deviates from the sinusoidal shape, new Veug U) > —COLI+ T COg2U). ©)
feat_ures appear. In_ particular, the _PN barrier was found to When the particle displacements are small,
oscillate as a function of the coupling paramegefor the
kink’s width) [4]. These_ pscillating dependenpe correspond ng  Ve{u) by its truncated Taylor series
to an exchange of stability between two positions of the kink o 5 . .
in a lattice, one centered on a particle site and the otheYsukU)=~zVsu{0)u”. The solutions of the equations of mo-
centered at the middle between two neighboring sites. tion are then plane waves orphonons u(t)
For other types of localized kink modes that may appeaf* €XPliwpi(«)t—i«l}, with the spectrum defined as
for some potential shapes, almost nothing is known about the 2
role of discreteness; it is this aspect that we want to analyze w2(K)= w2, +29(1-Cox), o> :@z 7
in this paper. First of all, we would like to note that discrete- pr mn M1+
ness has a qualitative effect on the continuum spectrum of a | ) ) )
lattice. While in the continuum model the phonon band ex-% being the dimensionless wave numbletl<r. The linear
tends to infinity in the direction of high frequencies, it is SPectrum(7) of the discrete FK model is bounded from
bounded from above for a discrete lattice due to the fact the@Pove as well as from below and it occupies the region
there exists the minimum oscillation wavelength defined by®min<®<®max, Where
the lattice spacing. The existence of an upper region forbid-
den for the propggatingor phonoT) moc_ies opens a new Oin= wph(o):m:
space for the existence of the kink's internal modes. We
show in this paper that, in this domain, kink modes of the
optical type, i.e., where adjacent particles move out of phase, Oma= Wpn( M) = \/wfmn+ 4q.
may exist for some potential shapes. Finally, we go beyond
the linear approximation for the kink’s internal modes and In order to understand how a kink can modify the phonon
study nonlinear kink internal modedVe show that, even in spectrum of linear modes in the lattice, first we recall the
the case of a harmonic coupling between particles and for theffects produced by localized impurityin a harmonic lat-
sinusoidal potential, nonlinear kink internal mode can appeatice. Let us considean isotopic impurity such that the mass
below or above the phonon band. mg of one of the lattice particles, e.g., that with the number

Before attempting a detailed analysis of the spectrum of a
k in a generalized FK model using analytical and numeri-

i.e., for
uj|<as, we can apply the harmonic approximation replac-

(1-r)
(1+r)’
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n=0, differs from all other masses)=1. In the absence of r>0. Moreover, for the PR substrate potenti@l the num-

the interatomic couplindi.e., atg=0), the impurity oscil- ber of local internal kink modes increases with an increase of
lates with the frequencwi(r%: \/m1 which is dif-  the valug|r| for r<0 [5]. Note that the low-frequency local-
ferent from the frequency of the lattice particlahich in ~ izeéd modes(except the first one called the PN modere

the case of a lattice coincides with the minimum edge of th&OWn as the kink's shape modes first observed fordtte
phonon banfw,;,. The impurity frequency is larger for the Model(see, e.g., Re{5)). The kink's shape mode with the
case of a light-mass impurity,<m and smaller in the case frequencyw, has the simple physical interpretation for the
of a heavy-mass impurityn,>m. Including the interatomic DSG potential6) atr <— %, when the usual kink27 kink)
interactiong# 0, we find that the impurity frequency gets can be regarded as that consisting of two couptetiibkinks
shifted o' (0 4 A, whereAw has the sign of [5:14—16. Such a kink can be interpreted as a “molecule”

lmp_) wlmp: wlmp H H “ 1 H
the mass differencAm=my—m. If the impurity frequency ~€ONSIStng of two “atoms”(m subkink$ and thew, mode
corresponds to relative oscillations of these atoms.

lies within the phonon spectrum band, i.e,
OminSOmpS ®max,  the  corresponding  impurity-induced
mode is calleda virtual mode or quasimode Otherwise,
when ojmp<opin 0f ®inp™ omax, the impurity mode be- In this subsection we discuss the qualitative features of
comesa local modeand oscillations near the impurity decay the kink oscillations and the property of kink's internal
exponentially. The local mode has an infinite lifetime in amodes in a discrete lattice. As is already underst(see
harmonic approximatiof9—11]. [7,17,19), discreteness decreases the kink's effective width
Introducing an impurity into a lattice always leads to theand therefore one can expect that it will increase the fre-
creation of one impurity mode, either a virtual mode, for aguency of the kink’s internal mode. This is the case of the
weak perturbation of the chain, or a local mode, for stronge#€ro-frequency Goldstone mode of the continuum model,
perturbations. Because a change of one of the lattice mass@&ich in a discrete lattice becomes the nonzero PN mode
does not change the total number of the degrees of freedof;< w1= wpn< wyin. HOwever, the results presented below
the degree of freedom associated with the impurity modéhow that the simple qualitative argument connecting the
must appear from one of the phonon modes of the harmonikink's width and the frequencies of low-frequency local
lattice. In the case of a local mode, the localized eigenmod&odes(kink’s internal modekis not always valid and we
can split from the bottom of the phonon spectrum band in thdlisplay some interesting unexpected features even for the
casemy>m or from the top of the phonon spectrum band for Simplest case of the sinusoidal substrate potential.

B. Effect of discreteness and shape of potential

mo<m. Similarly, a lattice withN impurities should havé\ Another important feature of any discrete model is the
impurity modes, but only some of them may correspond teexistence of the upper cutoff frequency of the phonon band
spatially localized modes. wmax<. As a result, one can expect not only low-frequency

Now, let us consider the FK chain without impurities but (LF) kink internal modes, but also high-frequen¢yF)
with a single kink. The kinkor antikink corresponds to a modes with the frequencies above the maximum frequency
topologically stable local compressig¢ar expansionof the  of the phonon bandy 5. We show below that this is indeed
chain, so that it is an extended object with a widts \/g. the case for some shapes of the substrate potential and we
Clearly, near the kink’s core the lattice is in a perturbed statélescribe these localized modes analytically, in the cases of
and the number of the corresponding “perturbed particles”Weak and strong interatomic coupling.
M is proportional to the kink’s widttM ~d=+/g. Thus we When the_ amplitude of kmk oscillations increases, we
can expect the existence b internal kink modegsimilar to ~ Should take into account nonlineeor anharmonig effects.
the impurity modes in a lattice with defegteither virtual or ~ FOr impurity modes nonlinear effects lead to a decrease of
local. The lowest frequency, corresponds to the mode the frequency of the LF impurity mode and, correspondingly,
where particles oscillate in phase, while the highest frel0 an increase of the frequency of the HF mode, provided the
quencyw,, corresponds to the out-of-phase particle OSCi”a_osml_latlon amplitude growgl1]. This effect was analyzed in
tions. Because the kink's core should incluaieleast two ~ detail for the lowest PN mode by Boesehal.[19]. Namely,

particles M=2, this simple reasoning suggests that we Cain increase of the amplitude of the kink’s oscillations at the
always expect the existence of at least two internal kink2otiom of the PN potential leads to a decrease of the fre-

modes. The mode with the lowest frequency corresponds tgUency from the value,; (0)=wpy to zero, at some critical
oscillations of the kink as a whole in a potential well created”@/Ue. A decrease of the frequency was also observed for the
by the PN potential[12,13 with the PN frequency shape mode, in the DSG model for <—7, when the 2r
w,=wpy. This mode reduces to the well-known Goldstonekink can be interpreted as that consisting of two coupted
mode withw;=0 in the continuum limit, i.e., wheig>1. subkinks[14-14.

For the SG model, the frequency of the second internal kink Figures 1a), 1(b), 2(a), and 2Zb) show some examples of
modew, coincides with the minimum frequency of the pho- the linear spectrum of kink excitations in the generalized FK
non spectrum ban@,=w.,,. Because the density of the model with the PR potenti&b), calculated numerically. To
phonon states of a harmonic lattice tends to infinity at theobtain these results, first we determine the static configura-
phonon spectrum edgésee, e.g.[10]), the second mode of tion of particles, corresponding to a kink, by minimizing the
the SG kink is delocalized and therefore it cannot be obenergy of the chain with the corresponding boundary condi-
served. But for a nonsinusoidal substrate potential, such a#ns. When all the equilibrium positiong™ of the particles
the PR potential5) or the DSG potential6), the second in a chain with a kink become known, we study the spectrum
mode exists as a local mode fox 0 or as a virtual mode for of small-amplitude oscillations around this state by looking
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ol e, e ] FIG. 2. Spectrum of small-amplitude excitations around a kink
~1.0 —05 0 0.5 1.0 in the generalized FK model as a function of the discreteness pa-
r rameterd for two values of the parameterdetermining the shape

of the potential. Sinced is a measure of the kink's width, high
FIG. 1. Spectrum of small-amplitude excitations around a kinkdiscreteness corresponds to small valued.ofa) r= —0.2 and(b)
in the generalized FK model as a function of the parametéeter-  r=-+0.2. In this latter case, the frequencies have been divided by
mining the shape of the potential=0 gives a sinusoidal potentjal .. to show more clearly the existence of a mode above the top of
for two values of the discreteness parametefa) d=3.0 and(b) the phonon band for smal.
d=15.

tered” kink. Such a position of the kink corresponds to the
minimum energy for the standard FK modsinusoidal po-
tentia). As we have chosen a fairly discrete case, the spec-
trum presented in Fig.(d) includes the PN mode with the

equations that can be written in a matrix fofBv= w2y, eduencywen=w,=0.2482, which is a significant part of
with v={v,}, where a triagonal matriB is the dynamical ~@min=(1-1)/(1+r)=1.1053, indicating that this kink is
matrix of the lattice in the presence of a kink and Pinned by the lattice discreteness. Figufe)Shows the ei-
B(I,1)=2g+ V., u®), B(l,1=1)=—g. This matrix is di- 9envector associated with this localized mode. It has the
agonalized numerically for a chain dF particles with fixed shape of _th_e derivative of the kink_profile function, which is
ends. The value ol is chosen large enough to avoid per- NOt surprising for a mode that will tend to the Goldstone
turbations due to boundary effedtypically N=200, but it ~Mode in the continuum limitlarged). The spectrum of Fig.
has been extended to 600 for broader kinks and larger value¥$d shows also the presence of the second mode, which is
of d). Its eigenvalues give the frequencies of the smallisolated below the continuum band. This is the kink’s inter-
amplitude oscillations around the kink and the correspondingial mode with the frequency,=1.0229. Its eigenvector is
eigenvectors describe the spatial profile of each mode. shown in Fig. &d). Figures &) and 3f) show the eigenvec-
Figure 3a) shows one example of the spectrum of a dis-tors of the mode at the bottom of the phonon band and the
crete kink atr = —0.05 andd=\/g=0.8. The kink shape is mode at the top of the band, respectively. As expected for
shown in Fig. 8b). We notice that the kink contains very few modes that belong to the phonon spectrum, they are not lo-
particles and that its center is situated between two particlesalized and extend over the whole atomic chain. These pho-
This configuration will be henceforth denoted by a “noncen-non modes are modified by the presence of the kink. This is

for a solution in the formu,=uf%v,e'“!. We assume that
the perturbatiorv, is sufficiently small ¢;<a) and ignore
all nonlinear terms in the equations of motion fgr. Intro-
ducing this ansatz into E{3), we obtain a system of linear
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FIG. 3. Example of the spectrum of a discrete kink in the generalized FK model. The results are shdlw#nlfad for clarity. Shown
are(a) eigenfrequencies of the small-amplitude excitations around the {bhkhe shape of the static kink;) the eigenvector of the lowest
mode(this is the PN mode that would give the Goldstone mode in the continuum,lifjtthe eigenvector of the second modkis is a
localized shape mode of the kinkKe) the eigenvector of the third modéhis mode is the lowest nonlocalized mode that belongs to the
continuous spectrum bapdand(f) the eigenvector of the highest nonlocalized mode of the continuous spectrum band.

known for the spectrum of the SG model and is also true forconsider first the results presented in Figg)1The phonon

a discrete model. band appears clearly, although it does not look continuous
Figures 1a), 1(b), 2(a), and Zb) illustrate the general because the calculations have been performed with only 200

features of the kink’s linear spectra discussed above. Let ugarticles so that the phonon band can contain at most 200
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L[ not have a localized translational mode. An analysis of the
phonon band in this case shows that the former PN mode
appears as a maximum of the density of phonon states along
051 1 the prolongation of the curve showing the variation of the
PN frequency versus for lower values of the shape param-
eterr. This “track” of the PN mode in the continuum spec-

> 00 J * trum is also visible on the eigenfunctions of the modes that
have a frequency close to it. The even modes, i.e., the modes
having the same symmetry as the PN mode, have the maxi-
mum amplitude around the kink’s center, which is reminis-

05 cent of the shape of a localized PN mode superimposed on a
nonlocalized mode. The odd-symmetry mode, or the mode
o | | | | far from the track,.does not e>§hibit such a maximum. The
Y - 0 o 20 ‘ 20 - 40‘ ‘ 0 absence of a localized translational mode can also be tested

n by driving the motion of the kink by a uniform external field.
_ N _ We did not succeed in driving the kink at low speed. When
FIG. 4. Eigenvector of a kink's hlgh-fr_equency .|nternal mode the applied field exceeds a depinning threshold, the kink
for r=0.6 andd=1.5. The frequency of this mode i§=3.3620,  giarts' moving fast and its motion is accompanied by a very
while the top of the phonon band is situated @, =3.0732.  gyrong growing tail of radiation. This effect can be under-
Neighboring partlcles move out of phase, contrary to the kink Sstood if one treats the track of the PN mode in the phonon
low-frequency internal mode. band as aonlocalized translational mode
points. The bottom of the band is determined by the lower Figures 2a) and 2b) show the deformation of the kink’s

cutoff frequencyw,,i,=(1—r)/(1+r) and therefore it varies Spectrum for varying discreteness parameteBesides the
with r. The top of the band is defined as change of the phonon band, one sees clearly from these fig-
Wmax= (0%, +4d?) Y2 Forr=0, we do not see clearly the PN Ures the gr_owth of the freque_r_lcy of _the PN mode whe_n dis-
mode in Fig. 1a) because its frequency is almost equal to 0creteness increases. In addition, Figb)2shows how dis-
for the valued=3 that was used to generate this figgier ~ creteness induces the formation of HF localized modes for
d=3 the properties of the FK model are already very closd >0- Discreteness has also more subtle effects, not visible
to those of the SG modelThe frequency of the PN mode ©n the figures, which will be discussed below.
increases as deviates from 0, especially for>0 [4]. In the The qualitative discussion and numerical results have pre-
low-frequency range, below the phonon band, Figa)1 Sented the main results of the role of discreteness and poten-
shows the successive appearance of localized modes aslial Shape on the kink's spectrum in a generalized FK chain.
decreases toward the limit value: — 1 (see Ref[5]). These T his sets the stage for some analytical studies that are able to
modes emerge from the phonon band because, as discus$gfP!ain the origin of these results in some limiting cases and
above, they originate from the modification of phonon spec&dditional numerical results to exhibit some fine points.
trum. Looking at the region of large, one can see also the
appearance of localized modabovethe phonon band, as ll. WEAK-COUPLING CASE
predicted by our discussions. Figure 4 presents one example
of the eigenvector of such a HF localized mode. It shows that ) ] ) .
the particles move out of phase as expected for a mode that First, we discuss the simplest case of a weak interaction
evolved from a phonon mode situated at the edge of th&etween particles, i.eg<1, when the kink’s core consists of
phonon band. two particlesM =2. In the lowest-order approximation, we
Figure 1b) presents similar results for a more discreteassume that all particles lie at the bottom of the Correspond-
case,d=1.5. The HF localized modes, which are a specialing wells of the substrate potential, while two particleay,
feature of discrete models since they do not exist in the conwith the numbersi=0 andn=1) are shifted from the bot-
tinuum limit, are more visible and the figure shows that, agom in such a way that they create a kink describing a tran-
for the LF modes, a discrete kink can have several HF localsition between two neighboring ground states of the chain.
ized modes. In addition, in Fig.()) one notices that the PN Under this assumption, we look for a static configuration of
mode and the LF localized modes for:0 show a nonmono- the particles in the form
tonic variation withr [or d, in Fig. 2a)]. This effect is

A. Analytical results

associated with a change of the stable position of the kink 0 for [=—1

with respect to the lattice sites asor d evolve. The kink’s Kink -b for 1=0

stable position can be either noncentered, as shown in Fig. ue —a+b for 1=1 ®
3(a), or centered when the kink’s center is exactly at a par- S

ticle site. A transition between these two states is known to ~as for 1=2

induce oscillations of the PN barrip4], but our results show

: nd, using the motion equati@8), obtain an equation for the
Lrl‘rf‘i;r}fc;r‘zigomgggg affects the whole spectrum of thT b, g(a.—3b) =V’ (b) ~ w?, b, which has the solution

Another interesting feature that appears in Figs) and ag
1(b) is that, for larger, the PN modepenetrates into the b~+.
continuum part of the spectruriherefore, such a kink does ®mint 39
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BecauseM =2, we expect the existence of at least two 5B(0,0)
internal kink modes. To find these modes and the corre- G(0,0;0) =1 Do(2)+
sponding frequencies, we substitute the function
u(t) =uf™+ suy(t), suj=e'“!, into Eq.(3) and then linear- yhere
ize it with respect to small oscillationsu;(t), thus obtaining
an equation for eigenfrequencies, i=1,2. To find the fre- 5B?(0,0)
quencies in an explicit form, we introduce the Green'’s func- Z=1-26B(0,0Dg(z) - ———Da(2). (16
tion (see, e.g., Ref11)) 9

Di(2){Z7%, (19

o R Analogously, we can determine other elements of the matrix
G(I,I";w)=—i lim f dt €<t UeTh,(1)0,,(0)), G, all of them having the same denominatbr
6-0 77 Zeros of the equatio=0 determine the poles of the
Green’s function and therefore the frequencies of kink’s in-

whereT is the time-ordering operatog,(t) is the displace- ternal modes. Using Eq$11)—(14) and (16), the equation
ment operator in the Heisenberg representation, @hd 7—q can be rewritten as

means an average over the ground state. The matrix function
G(w)=G(l,l"; w) satisfies the  matrix  equation 292— ¥ 72— 1=y sgn(z)(2g— yz) 17
(w?l—B)G(w)=1, wherel is the unit matrix andB is the (20°=y v sur(z)(2g-y

matrix with the elements where y=5B(0,0)~ 3V’ (0)b?. The solution of Eq(17)
9H is defined as

aU|(9U|/>ulu:<ink.

B(l,l’)=( ©)

¥ }
1+ 29(9—v)

and corresponds to a local mode provideg,<—1 (or
v<g). However, the direct substitution of the soluti@B)
" 2 into Eq. (17) shows that the latter is satisfied only provided
— ’ H + - ’ + r_
Bo(L1")= 011 (@hint29) = (1 41+ 8117 -0)0, y<0. For the PR substrate potent{&) we have

ZpN= (18)
In our case the matriB can be presented in the form
B=By+ 6B, whereBy is the “unperturbed” matrix describ-

ing linear oscillations of the chain without the kink,

while the perturbatioB is caused by the presence of a kink

. _ 1-10r+r2
SB(I,1")=8111(8 o+ 8, D[ Veud b) = wimin] sup (0)= = @in (14r1)? (19
1 . . .
~ 55""(5"0+ 8 )V (0)b2. and the conditiony<0 leads to the inequality>r,, where

ro=5-26~0.101. Furthermore, the conditiom?>0

. . o to th itional i lit
The Green’s functiois satisfies the Dyson-type equation eads to the additional inequality

— 1
G=GotGooBG, (10 Y>70="— 5 whin( 1+ V1+4g/ 0}y (20)
whereG is the Green'’s function of the FK chain. It satisfies
the equation %—By)Go(w)=1 and has the form because ay=y, the PN frequency vanishes.
Go(l,I";@)=D,_,(2), where Thus the kink’s LF internal mode exists provided both the
" inequalitiesr<ry and y> vy, are satisfied simultaneously;
Di(2)=A(2)y"(2), (11 this mode corresponds to the PN mode with the frequency
i 2 12
AZ)= — ——— (12 o :(wz. B ] 21)
29 ’_zl—Z ' PN min g—vy '
Here we have introduced two new variableandz accord- The second solution of the equati@r= 0 can be found as
ing to the relations
2
Y
- P _ 52 — 2_ 2 = R
y(2)=—2z+iV1-22, z=(0’-whyl2g, (13 =1+ 29(g+ 7) (22

wherew 4 is the center of the phonon band, ;= »?2,,+2g.
For the frequencies within the phonon basgl,<w<w®mnax
we have|z|<1. Outside the phonon band, wheg$>1, the
square root in Eq9.12) and(13) should be calculated as

and corresponds to a local mode providegy>1 (or

v>—@). Again, a direct substitution of the solutid®2) into

Eqg. (16) shows that the equation is satisfied only far 0

(or r>rg). This HF mode corresponds to the antiphase vi-
1—2=—i sgr(z) JZ-1. (14) brations of two atoms of the kink’s core with the frequency

Equation(10) can be easily solved; its solution gives the e

2
- +
expression for the functio(0,0;w), OHF [ Cmax” gty @3
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FIG. 5. Spectrum of the FK chain containing a very discrete
kink (d=0.5, corresponding tg=0.25 as a function of the shape
parameter. The crosses are the frequencies of the linear modes
around the kinks, determined numerically. The triangles and dia-
monds indicate, respectively, the frequencies of the PN mode and
the kink’s high-frequency internal mode, calculated analytically in
the weak-coupling limit.

du,

Thus, in the weak-coupling limit, depending on the shape of
the substrate potential, a discrete kink has either the PN
mode ifr<r, or the HF localized mode, if>rg.

B. Comparison with numerical results

The analytical results presented above confirm the nu- 0 50 100 150 200
merical observations reported in Sec. Il, i.e., that for large L
and sufficiently strong discreteness the PN mode may disap-
pear by penetrating into the phonon band. For a more dek;
tailed verification of the validity of the analytical approach in ot
the weak-coupling limit, we have determined numerically

the spectrum of a very discrete kirtke., d=0.5, so that lowest mode of odd frequendyhe mode with lowest frequency in

g=0.29 as a fu_nctlon ofr. In_ Fig. 5 the numerlca! results the spectrum is the even translational mofibe several values od
are compared with the analytical calculations obtained abovgyqying the shift from the nonlocalized to the localized state in a

for the weak-coupling limit. The theoretical values @by small range ofi values.
and oy have been found from Eq$21) and (23), respec-
tively. The values ob, entering in the expression fof have
been taken from the numerical static kink solution. In the
range O<r=0.2, the analytical predictions of the domain of
existence and frequencies of the PN and HF modeseme
accurate This is rather remarkable when one considers tha;
an accurate determmaﬂon of the PN frequency of the_ S nly two particles in the core, but its properties cannot be
Kink (r=0) was only obtained through Qlaborate analyt'caldescribed accurately by the simple analytical approach be-
rr?e_thods[ZO]. The Success of our anal_ytlca! approach IS e?('cause, in particular, the position of the kink’s center between
p_alned by the fact that it treats the lattice dlscretgness mtrln(}—w0 particles may not be a stable positiaH.
sically. But one cannot expect the results to give a goo

agreement when the kink’s core contains more than two par-
ticles. This is the case of strong coupling, but also large
values, of the parameter, because the deformation of the  The effect of discreteness on the spectrum of the kink’s
potential is associated, for positive with a broadening of internal modes is particularly interesting for the sinusoidal
the kink's core[4]. Figure 5 shows that for largethe ana- potential { =0) because, in the continuum limit, this model
lytical prediction ofw,e deviates from the numerical results. is described by the integrable SG equation where a kink has
The second HF mode that appears at large the conse- only one localized mode, the Goldstone mode associated
quence of an increase of the number of particles in the kinkvith the kink’s translation. Figure (6 shows a magnifica-
core, as discussed in Sec. Il. The analytical result obtained ition of the spectrum around the bottom of the phonon band
the weak-coupling limit shifts gradually from the first HF for the discreteness parametgiin the region 0.5d=<1.5.

FIG. 6. Spectrum of a discrete SG kir(g) Magnification of the

tom of the phonon band for G&<1.5. The frequencies of the
linearized modes around the kink have been calculated for a chain
of 400 particles, with fixed boundary conditior(y) Shape of the

mode to the second mode, which appears at largbecause
the analytical calculation determines the mode that is the
closest to the phonon band and therefore it is not appropriate
o follow the frequency of the mode versuswvhen several
ocal modes exist. For negative the kink stays sharp, with

C. Kink's internal modes in the discrete SG chain
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One can see that for small (0.52<d<1.26) one mode the kink’'s core,|x—X|<d, the kink’s shape can be pre-
becomes shifted outside the phonon band and then it returrsented as the Taylor expansion

to the phonon band for higher values af This means that 1
the discrete SG kink can possess a localized internal mode in kink .\ _ , _ Lo V-
addition to the translational mode. Figurébp shows the L ()= u(X)FU XY (x=X) + 3!u (XY (x=X)"+ ’
shape of the corresponding eigenmode, which is the odd (26)
mode corresponding to the lowest frequency. &er0.5 or )

1.3, it has the characteristic shape of a nonlocalized mod&here u(X)=—oagJ2=—ma and, according to Eqc24),
and corresponds approximately to one period of a sinusoiddf® have u’(X)=— oy Vg m)/d=—20/d, u"(X)
function, slightly distorted and with a large phase shift due to=U' (X)Veuf m)/d*=20@y,/d°, and a similar expressions
the presence of the kink. To understand this shape, one mu&f higher-order derivatives. Here we have introduced the
keep in mind that the numerical results are obtained for &0tation@g,;,=—Ve,{7) and have taken into account that
finite chain with fixed boundary conditions. Therefore, we Vsuf 7) =es=2. Now, using this expansion we can define
cannot observe the true bottom of the band that would corthe effective kink width dey as deg=d/\— Vi Xm)
respond to a mode with an infinite wavelength. The calcula=d/@,,. As particular cases, for the SG model we have
tions have been performed with chains of 200 and 400 sited.;=d, while for the FK model with the PR potentiéB) we

to check that the results are not perturbed by finite-size efebtain

fects. On the contrary, fat=0.7 ord=1, which correspond

to a mode below the bottom of the phonon band, the eigen- - d= d 5
function shows an exponential decay away from the center. Ttro @mint @7
The decay is faster fa=0.7 because in this case the mode

is farther away from the edge of the phonon band, as can bee., der>d for the case <0 anddey<d for the case >0.
seen in Fig. &). The curvature of the eigenfunctigdown- Now, to find the kink’s internal modes, we should look
ward for a nonlocalized mode and upward for a localizedfor a solution of Eq(3) in the form

modse is a sensitive test of localization because it shows a Kink Lot

qualitative change from the localized and the nonlocalized u(t) =u™(lag)+ oue', (28)
mode. The existence of an extra localized mode in a narro

Where the amplitudesu, of kink-shape oscillations are as-
range of the discreteness paramedeis also observed for b ! b

sumed to be small. Further analysis of the kink’s internal

other potential shapes close to Fhe sinusoidgl S’.t{a@' modes is different for the LF and HF modes and should be
r=-—0.01), but the case of the discrete SG kink is perhap arried out separately

the most interesting because the spectrum is known exactly
in the continuum limit. It indicates that discreetness can
change the modes around a kigkalitatively and create a
kink-shape mode, even for harmonic interactions and a per- For LF kink’s internal modes, the particles near the kink’s

B. Kink’s low-frequency internal modes

fectly sinusoidal potential. core oscillate approximately in phase. Therefore, we can use
a standard continuum limit approximation by letting
IV. STRONG-COUPLING CASE du;— du(x) in Eq. (28) and assuming thatu(x) is a slowly
) varying function of the particle number. Then, substituting
A. General analysis Eq. (28) into Eq. (3) and expanding/. {u) into the Taylor

In the opposite case, when the interatomic coupling iseries with respect to a small deviatida, we obtain the
strong, i.e., forg>1, we can use the continuum approxima- stationary pseudo-Schiimger equatior(see, e.g., Ref21])
tion. In this case the shape of the static kink is determined,
according to Eq(4), by the equatior?u/dx?*=V/ u), or

du o
ax__d V2Vgud U), (24 where

2

— WJerCr(X) Su(x)=Edu(x), (29

Ve X) =d ™ 2{V2 Juknk(x)]—VZ,(0)}, 30
where o= +1 is the kink’s topological charge. Equation serlX) Ve U0 ]~ Vaud ) (30
(24) can be solved explicitly only for some special cases. FOko thatVg.{x) —0 when|x|—=, and

example, for the sinusoidal substrate potential the kink shape

is given by the expressiofrecall ag=21) E=d (w?—w;). (31)
(X—X) The potentialVg.{X) has a widthde, given by Eq.(27),
UEG(X):4 tanlexp[ —0— ] (25 and the depth/, given by the expression
B 2 21417
whereX is the coordinate of the kink’s center. Although for VO_EZ(“’min+“’min)_ 21-r2 (32

a general form of the substrate potential the shape of the kink

can be found only in an implicit form, we can obtain an  The kink’s internal modes correspond to localized eigen-
approximate analytical result useful for the subsequenstates of EQ.(29) with negative eigenvalues. As is well
analysis of the kink’s internal modes. Indeed, in the region oknown, in the one-dimensional Scldinger equation with a
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potential vanishing at infinity, there exists at least one local- 8 [T T
ized eigenstate provided the area integral calculated for this
potential is negative. This is indeed the case of the PR po-

tential at smallr and it is easy to check that the lowest
discrete eigenvalue of the eigenvalue problg®8) is equal
to E;=—(wmn/d)? with the eigenfunction Su;(x)
sd[uk"™(x)]/dx. This solution corresponds to the Goldstone

mode and describes the continuous translation of the kink in c 4

the continuum model. However, as will be seen below, for _

rather larged we observe that the PN mode tends to disap- &A'A'AA_ _

pear, merging with the phonon band for large values.of 2 EAEPYS S §

Thus the existence of a PN mode for anywhich one could

expect from the existence of a Goldstone mode, is true only

for d really large, i.e., for a nearly continuum limit.
Higher-order eigenvalues of the proble(@89) can be

found only numerically. In order to investigate them qualita-

tively, we consider the modified Bohl-Teller(PT) potential

Vo
Ver(x) =~ cosH(x/b)’ (33

which describes a potential well of the depth and widthb
and allows exact solutiong22]. Namely, it is known that
there existNpt bound states for the potential welB3),
whereNpr=int(\) and\=2%(1+ J1+4C), C=Vyb% The
eigenvalues of the discrete eigenstatbeund modes are
found to beE;=— V(A —i)%/C, wherei=1,2,... Npr. We

IN THE FRENKEL- . . . 6059

O bsrenenadi v b b b0
-0.50 -0.40 -0.30 —-0.20 —-0.10 0.00
r

FIG. 7. Spectrum of quasicontinuous kinkd=3) as a function
of the shape parameter The crosses are the frequencies of the
linear modes around the kinks, determined numerically. The PN
mode has almost the frequency 0 and is not visible on the figure.
The triangles indicate the frequency of the kink’s internal mode that
is the closest to the lower limit of the phonon band, calculated
analytically in the strong-coupling limit.

tinuum limit. It indicates that the kinks do have at least one
localized mode in addition to the Goldstone mode, with van-
ishing frequency that does not appear on the figurer k@

notice that the number of the bound states as well as thelput very close to 0, the frequency of the localized mode is

eigenvalues are expressed through the only one dimensio
less paramete€. A boxlike potential well leads to similar
results with\ = 1+ (2/7)\/C.

Now let us approximate the potentidk(x), defined by
Eq. (30), by the PT potentia{33). First we note that for the
SG model the potentid¥ s.{x) has exactly the form of the
PT potential(33) with the parameter€=Cgg=2 and\ =2.

well approximated by Eq(36). For lower values of, for
which other localized modes appear as described below, the
approximate expression, which gives the mode that is the
closest to the phonon band, is unable to follow the variation
of the frequency of one specific mode versubecause it
tends to jump from one mode to another. With a further
decrease of, r <rz;~—0.2, whenCpg>6 and\>3, a third

Therefore, the SG model has only one bound state, the Goldocalized mode appears and so on. Figure 7 shows that the
stone mode, while the energy of the second eigenmode c@nalytical predictions are well confirmed by exact numerical

incides with the bottom of the continuum spectrigp=0
(or W= wpyin)-

For the PR potentia(5), we can defineo=d¢; and V,
from Eq.(32), so that the paramet€& can be determined as

(1=r)(1+r?)
Cpr= BEETIL (34)

For r<r,=0 we haveCpg>Cgs=2 andA>2. Therefore,
the FK model with the PR potentigb) should have the
second bound state with the energy

ol
E,~— . (35)

Omind

Thus the FK model with the PR potentiéB) always pos-
sesses the kink's second internal moderfarO and its fre-
guency can be found explicitly for small valuesrof

A—2 2) 12 32r.2
wzm[wﬁwin_( )} %wmin_w- (36)

®min min

Figure 7 shows the spectrum around a kink fe¥O and
d=3 corresponding to rather broad kinks close to the con

calculations.

Now we take into account discreteness effects, assuming,
however, that they are small. As is knoWwn17,18,23, dis-
creteness leads to narrowing of the kink’'s width, which ap-
proximately can be written in the form

1 2

-1

as

d— dgisc~d d

(37

As a result, the well of the Schdinger potential30) will be
narrowed, leading to a renormalization of the param€ter

212

as

11
12\ d

C_> CdiSCT% C 12

(38)

Therefore, this effect leads to an increase of all eigenvalues
of Eq. (29) and therefore to an increase of the eigenfrequen-
cies corresponding to the internal modes. First, the Gold-
stone mode becomes the PN mode with a nonzero frequency
w1=wpy. Second, the kink’s internal mode can exist only
for r<r,, wherer, is a nonzero negative value. Analo-
gously, the critical values of at which the higher-order
modes show up become shifted to more negative values of
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Such a shift can be seen by comparing the results of Fig. 7, 0.30
atd= 3, and those of Fig.(b), atd=1.5.
0.20
C. Weakly perturbed SG kink

A general condition for the creation of the kink’s internal . 010

modes can be derived only for the limit of the SG equation K
perturbed by a small additional term. To show this, we con- 000
sider the renormalized perturbed SG equation of the form

Pu  Pu -0.10

Sz m+smu+sg(u)=0, (39

-0.20 e e

where ¢ is a small parameter and the functigifu) is a 0 10 <0 30 40
correction to the sinusoidal potenti@hich can also include !
derivatives, etg. First, we look for the kink solutiom(x) FIG. 8. PotentialVsy{X) of the pseudo-Schdinger equation

of Eq. (39 by means of the perturbative expansionsfor the kink’s high-frequency internal modes in the strong-coupling
u(X)=ulO(x) +eus(x)+- -+ , whereu(®)(x) is the kink so-  limit (d=5) at r=0.2 (dotted ling, r=0.4 (dashed ling and
lution of the SG equation. The correction can be found in  r=0.6 (dash-dotted ling
an explicit form

eigenvalue appears without a threshold for0 due to a

1 X 2 x g(u) deformation of the reflectionless potential corresponding to
U= oo fodx costix | coshe 94X the exact SG kink.
To analyze the small-amplitude excitations around the D. Kink's high-frequency internal modes
kink u(x), we linearize Eq. (39) by substituting Because for high-frequency modes the nearest particles
u(x,t)=u,(x) +w(x)e'“!, so that the equation for the func- oscillate approximately with opposite phases, it is natural to
tion w takes the form look for a solution of the motion equatiof8) in the form
, (28) with su;=(—1)'6v, and then to use the continuum ap-
d°w 2 proximation, assuminguv(x) to be a slowly varying func-
- 4 W= 2 _ ’ .
0 T cosmx W WHewHed)w=0, (40 {5y In this way we again obtain the pseudo-Scimger
equation for the functiodv (x) analogously to Eq(29), but
where with the effective potential of the form
— A28 _\y kink "
5(x)=sir[uf(o)(x)]u1(x)—g’[u(ko)(x)]. (41) VSch(X)_d { Vsuk{u (X)]+Vsut)(o)} (43)

An analysis of the spectral problet0) can be carried out and the corresponding eigenvaliaffective “energy”)

by means of the singular perturbation theory and allows one E=d 2(w?,—wd) (44)
to find an additional eigenvalue of the discrete spectwm max '
which splits from the edge of the continuum spectrum band
under the action of the external perturbatierz (details of
this calculation will be discussed elsewh¢?d]). The result
is w5= w2, —&’k?, wherewm, is the lowest frequency of the
phonon bandwhich can be also shifted by the perturbajion
and the parametet is defined by the expression

Note that now the functiovg,,, enters into the potential
(43) with a negative sign, meaning that the bound states with
E<O0 describe the HF localized modes with the frequencies
above the upper edge of the phonon spectrum band
®> wmax- AS is shown in Fig. 8, for the PR potentid@) with
r>0 the function(43) always has two symmetric potential
wells separated by a maximum. For smalthe wells are
1 +oo .
K== f dx tantx[ 8(x)— 8() Jtankk>0,  (42)  Very shallow and the potential may not have a bound state.
2 )= According to the well-known result of quantum mechanics,
this corresponds to the total area calculated for the potential
whered(x) can be an operator, arfif) is the limiting value ~ Vg{X) to be positive.
of the function(41), which takes into account a shift of the  As r increases, the minima become deeper and a bound
phonon band under the action of the perturbatgiru). state emerges from the top of the phonon band, as shown in
Therefore, a small perturbation applied to the SG equatioffrig. 9(a). As it is the lowest state of the pseudo-Sdainger
can give rise to a kink’s internal mode provided>0. For  equation with an even potential, it must have an even sym-
the DSG model the application of E¢2) gives the result metry Sv(x) = év(—x). This is confirmed by numerical cal-
already obtained above; see Eg6). culations of its eigenvector, as shown in FigbP Asr in-
Finally, it is interesting to note that the res(#?) is simi-  creases further, the wells become deeper and additional
lar to the well-known result of quantum mechanics that abound state appears as an odd solution with a slightly higher
one-dimensional well always has at least one discrete eigemigenvalue; see Fig.(®. The mode with the highest fre-
value. For the case of the kink’s internal mode, an additionatjuency wy> wmnay is the kink's internal mode, which de-
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scribes in-phase oscillations of the kink wings, while other
Mt b more complicated modes correspond to lower frequencies.

10-10% n V. KINK'S NONLINEARITY-INDUCED

INTERNAL MODES

The analysis presented above is based on the linear ap-
proximation when the amplitude of the kink’s internal oscil-
lations is assumed to be small. For larger amplitudes the
oscillations become anharmonic and we should take into ac-
count nonlinear effects.

First we recall that for the FK chain without a kink LF or
e HF intrinsic nonlinear localized modes can existe, e.g.,

S i Ref.[2]); the LF mode is an analog of a breather of the SG
9.50 hauntl W o sl L0 TN TN model, while the HF mode appears due to the discrete nature

000 0.10 0.20 0.50 0.40 0.50 0.60 0.70 of the FK model. In addition, for the FK chain with an im-
: purity, nonlinear impurity modes can also eXi$i]. In both
(b) these cases the frequency of LF mode decreases, while the

frequency of the HF mode increases, with a growth of the
oscillation amplitude. It is natural to expect similar effects
for the kink’s internal modes, i.e., a nonlinearity-induced
shift of the mode frequencies. Such a shift of the frequency
due to a self-localization effect may have the following im-
portant consequences. If in the linear approximation the
kink’s internal mode is a virtual mode, i.e., its frequency is in
the phonon band but close enough to one of the band edges,
this mode can be transformed into a local mode with the
frequency lying outside the phonon band for larger oscilla-
tion amplitudes. Thus the number of internal kink modes will
increase with increasing amplitude of the kink’s oscillations.
In general, the nonlinearity of a given shape mode is ex-
pected to have two main consequences: the excitation of

0 50 100 150 200

X higher harmonics and a frequency shift as a function of the
amplitude. The first effect, i.e., the excitation of higher-order
(c) harmonics, may have a dramatic effect if they fall within the

o I phonon band because they provide channels for radiative de-
? ] cay. This is the case for the PN mode when its frequency is

above the valuew /2. Let us illustrate this by an example

for r=0.1 andd=1 for which the PN mode has the

frequency wpn=0.5386 while the phonon band

mn<o<\w2, +4, With wn,=1-r)/(1+r), is situated

in the range 0.8182 w=<2.1609. We simulate the dynamics

of a kink with an excited PN mode by solving the equations

of motion (3) with the initial condition

u(t=0)=uf+Ap"N, (45)

o2l N wherev |PN are the displacements of the particles correspond-
0 50 100 156 200 ing to a normalized linear PN mode a{v/™)2=1, ob-

' tained numerically by diagonalizing the dynamical matrix of
the small-amplitude oscillations as described in Sec. lll. The
parameteA determines the amplitude of the excitation of the
coupling limit. (@) Spectrum of the small-amplitude excitations M0de. For smalh (such asA=0.001) the linearized descrip-
around the kink vs the potential parametefor d=5. Only the  tion is valid and the numerical simulations confirm the sta-
region corresponding to the top of the phonon band is shéign.  Dility of the mode. We follow the amplitude of the oscillation
Eigenvector of the mode with the highest frequencyrfe0.6. Itis  Of the kink in the PN potential by recording the motion of the
a localized mode with even symmetxg) Eigenvector of the mode particles that are on both sides of the center. As shown in
with a frequency immediately below. It is also a localized mode,Fig. 10@), the amplitude of the oscillations of these particles
but as its frequency is very close to the top of the phonon band aground their equilibrium positions stays constant with time.
shown in Fig. 9a), it is only weakly localized. This mode has an The measurement of the frequency of the oscillation derived
odd symmetry. from a Fourier transform of the time evolution of the posi-

FIG. 9. Kink’s high-frequency internal modes in the strong-
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(a) simulation shows a significant decay of the amplitude of the
0.04 ‘ PN mode, as shown in Fig. (4). The Fourier spectrum
gives a frequency of»y=0.538 20-0.000 31. This indicates
a slight decay of the frequency of the PN mode when its
amplitude increases. Moreover, the Fourier spectrum indi-
cates a larger contribution of the second harmonic, which is
o o0 | within the phonon band and therefore induces the emission
of small-amplitude propagating waves that carry energy
away from the kink{see Fig. 1()]. This emission explains
_oo0z , the decay of the amplitude of the PN mode.
As discussed above, we also expect thalinearity can
localize a modethat would not be localized in the linear

0.02r b

Vi

-0.04 L L lattice. We have checked numerically that this effect is in-
oy deed possible. An example is presented in Figéa):1.1(c).
We consider a kink in the discrete SG equation, i.er,=a0
(b) andd=2. Figure 11a) shows the shape of the first mode
0.005 ‘ o above the PN mode, i.e., the mode that corresponds to the

bottom of the phonon band. An initial condition for the simu-
lation is generated by adding to the equilibrium displace-
ments corresponding to the eigenvectxﬁH of this mode,
with an amplitude factoA=0.5,

0.000 ¥¥

-0.005

du,/dt

u(t=0)=uf%+ Ap[ ™. (46)
-0.010 Figure 11b) shows that after an initial decay because the
initial condition is not an exact solution of the system, the
amplitude of the kink’s oscillations, observed through the
displacements of the particle adjacent to the center, settles to
| a value that oscillates but has a constant average. A snapshot
of the velocities of the particlelsee Fig. 1lc)] shows that
FIG. 10. Numerical studies of the time evolution of a kink with the displacements around the kink have now ¢haracter-
an excited PN mode far=0.1 andd=1.0. The initial condition is  istic shape of a local mod&hey decay exponentially away
given by Eq.(45). (a) Time evolution of the displacement of a site from the center. The measurement of the frequency of the
adjacent to the kink center. Only the difference between the equigrge-amplitude shape mode created by this process gives
librium position and the instantaneous position of the particle is,, —.995 98-0.000 78, i.e., a frequency that is below the
?h‘?W”- Thi_s_figurg combines the res_ult of two s_imulations with tWOpottom of the phonon bandy,;,=1.0 for the discrete SG
|q|t|al conditions. (i) A=0.001. The time evolutllon of the .partlcle chain. The slow oscillation of the amplitude of the shape
displacements appears on the flgu.re as a thick black line arou ode that appears in Fig. ) is a beating between the
v)=0 because the period of the oscillation is very small at the scalg, o ocalized by nonlinearity and a mode at the bottom of
of the figure (G=t=<20 000) and the sinusoidal oscillation of the . :
displacement cannot be seen. The thickness of the line shows tﬁge ph(_)non band that pe_rs_lsts in ”.‘? system because the
amplitude of the oscillation. To make this amplitude visible on theSlrnulatlon started from an 'F"“a' qond|t|on that does npt cpr-
plot, it is magnified by a factor of 10. One can notice that therespond exactly to the excited kink. The extra ‘?O”.t”b“t'on
amplitude of the oscillation stays constant as time evolyis. near _the bottom of the phonon_ band has a van!shlng group
A=0.1. For this larger excitation the amplitude of the PN modeVelocity and stays around the kink’s center, causing the beat-

decays with time. The figure shows only the extrema of the particldnd- Therefore, increasing the amplitude of the lowest mode
displacements. The positive and negative extrema of the oscillatioff the phonon band has turned it to a local mode due solely
generate the two exponentially decaying curves on the git. t0 the nonlinearity-induced frequency shift.
Snapshot of the velocities of the particlesatL0 000 for the initial A similar localization due to nonlinearity is possible for a
condition with A=0.1. The emission of small-amplitude waves high-frequency localized mode, although this effect is more
away from the kink center appears clearly on the figure. A dampinglifficult to observe numerically. Figures & and 12Zb)
term (with the coefficienty=0.1) is added to the equations for the show an example fal=2 andr =0.23. This value of was
last ten sites at both ends of the chain to avoid a reflection of thehosen because, although the corresponding kink does not
waves at the fixed ends. have a linearized, localized, HF mode, a small increage in
(up tor =0.25 is sufficient to create such a mode. Therefore,
tion of one of these particles gives=0.538 51-0.000 31, although we start from an approximate initial condition, we
in good agreement with the frequenaypy=0.538 58 ob- can expect to create a localized mode fer0.23 if we in-
tained by a numerical investigation of the spectrum of thecrease the amplitude of excitation of the mode at the top of
small-amplitude oscillations around the kink. Although thethe phonon band enough to make it nonlinear. The results of
Fourier spectrum detects a tiny contribution of the secondrigs. 12a) and 12Zb) show that it is indeed possible. The
harmonic, it is so small that it does not play any measurablénode shown in Fig. 12) was excited with an amplitude
role in the system dynamics. On the contrary,Act0.1 the  factor A=3. A plot of the velocities of the particles at

-0.015 ‘ ‘
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-0.04

-0.06 L . I
0 200 400 600

du,/dt

0 200 400 600
1

0.0 0.5 1.0 1.5 2.0

t (10" tu.) FIG. 12. Nonlinearity-induced localization of a high-frequency
mode around a kink for =0.23 andd=2. (a) Eigenvector of the
linearized mode around the kink that corresponds to the top of the
phonon band. Its frequency is equal dc=4.048 657 1.(b) Snap-
shot of the velocities of the particles &t 25 000 time units.

t=15 000 time unitysee Fig. 1%)] shows that the mode
has acquired a shape with exponentially decaying tails, char-
acteristic of a local mode. The variation of frequency is
small, 0=4.048 998:-0.000 959, i.e., it is above the initial
value of 4.048 657 1 corresponding to the top of the phonon
band.

7(3-35 “““ L
0 100 200 300 400
I We have investigated the effect of discreteness on the
existence and properties of a kink’s internal modes in the
FIG. 11. Nonlinearity-induced localization of a low-frequency generalized FK models. We have shown that there exists a
mode around a kink for=0 andd=2. (a) Eigenvector of the  simple qualitative analogy between the kink’s internal modes
linearized mode that is situated above the PN mode. This modgnd impurity modes and we have employed this analogy to
corresponds to the bottom of th'e.pho_non band. Its frequency igjiscuss the physics and origin of these localized modes of
equal tow=1.000 12(due to the finite size of the system the true inks in discrete lattices. We have used two different meth-
bottom of the phonon band ai=1.0 is not observed (b) Time  o4g tg describe the kink’s internal modes analytically in the
evolution of the amplitude of the oscillations of the particles ad]a'limiting cases of weaKstrongly discreteand strong(con-
cent to the kink center in a simulation with an 'n'F'al gond't'on tinuum approximationinteractions between the particles in
Including the equilibrium kink and the mode shown(® with an o " a4ice “\We have revealed and described two important
amplitude A=2.5. Only the extrema of the displacements alrephysical effects associated with the kink’s internal modes:

shown.(c) Snapshot of the velocities of the particlestat15 000 . . ) _—_—
time un(its), P P high-frequency localized kink oscillations above the phonon

VI. CONCLUSIONS
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